Sifted Disks

reducing the number of sample points retaining randomness improving quality

Mohamed S. Ebeida

Ahmed H. Mahmoud - Muhammad A. Awad - Mohammed A. Mohammed

Scott A. Mitchell

Alexander Rand - John D. Owens

D-adapco

Eurographics 2013

presenter = Scott

Application

1. grayscale -> sizing function for

2. Stippling via Maximal

Poisson-Disk Sampling

3. Sift points

Replace 2 for 1.

Respect original sizing function.

Fewer points Minimal quality loss

Universally lighter, but features still distinct

edge-detect

Overview

- Input: point sample distribution
 Poisson disks, Delaunay Refinement
 - Sizing function
 - Adheres approximately
- Observe: other distributions also respect sizing function, might be smaller
- Process
 - Replace points 2-for-1
 - Adhere to sizing function
- Result
 - Fewer points --- how many?
 - Retained randomness --- surprise!

Mesh Improvement
Sifting triangulations from

DR Delaunay Refinement

ODR Delaunay Refinement w/ Off-centers

MPS Maximal Poisson-disk Sampling

MPS
new disk
global uniform random locations
outside prior disks

DR new disk center of large empty dual circle

ProblemPainting Yourself Into a Corner

MPS, DR easy to introduce a small gap that later forces

- distance = r + eps
- dense sampling

DR Solution off-centers DR (ODR)

Offcenters reduces density... by a lot for non-uniform sizing functions

But we will focus on r = 1, uniform

10 Alper Ungör "Off-centers: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations"

Fig. 4. Input PSLG is a plate with five holes described by 64 points and 64 segments. Smallest angle in the initial triangulation (a) is about 1°. Smallest angle in both output triangulations is 34°. Circumcenter insertion (**triangle** software) introduces 1984 Steiner points resulting a mesh with 3910 triangles (b). Off-center insertion introduces only 305 Steiner points resulting a mesh with 601 triangles (c).

Our MPS-like Solution: Sifting

- Post-process
- For all pairs of points with overlapping disks
 - Try to replace 2-for-1
 - (Replacing changes the set of overlapping pairs)
- Quit when no pair can be replaced

Sifting Algorithm Gather Boundary Disks

Replace Q in ListP by ListQ

3. Remove duplicate disks

Sifting Algorithm Winnow Non-Bounding Disks

- Remove disks not bounding the white area
 - Test consecutive disks in list, see if left point of intersection is inside next disk

 In-circle test speeds up intersection point test by 3x technical for non-constant radius, details in paper ©

Sifting Algorithm **Exclusion – Inclusion Disks**

- A new disk will cover all the white area
 - Iff it covers all the corners of intersection
- Reason: because disks are convex
- Need replacement disk
 - Outside all sample disks
 - Inside all dual corner disks

Sifting Algorithm

Search for Random Location – Using "Simple MPS"

- Problem: find random point that is
 - Outside all sample disks
 - Inside all dual corner disks

Solution:

- Simple MPS [Ebeida et al. Eurographics 2012]
- · extended for purple inclusion disks

Flat quadtree

- Keep / discard squares entirely inside / outside disks
- Sample from kept squares done if success
- Refine all squares and repeat

If last square is discarded (machine precision)

· No replacement disk exists, try a different pair

Simple MPS Algorithm Details

Initialize

bounding box of purple corners subdivide into squares - diagonal about radius

→⊞

Refine all squares

center inside a blue circle - delta? Discard center outside a purple circle + delta? Discard

Repeat with refined squares

No squares? No replacement exists

!in then discard ■

Sifting Improves All Uniform Test Distributions

• Sifting improves, MPS, DR and further improves ODR

sMPS

Sift->

sDR

Sifting reduces number of points by ≈25%

_				
	sample	point	relative	Delaunay
_	type	density	density	edge lengths
densest possible $\triangle(r)$		$\frac{2}{\sqrt{3}}r^{-2}$	3	$\{r\}$
	$\Box(r)$	r^{-2}	2.60	$\{r,\sqrt{2}r\}$
	$\bigcirc(r)$	$\frac{4}{3\sqrt{3}}r^{-2}$	2	$\{r,\sqrt{3}r,2r\}$
	DR(r)	$0.75 r^{-2}$	1.95	[r,2r)
input	MPS(r)	$0.70r^{-2}$	1.82	[r,2r)
1	ODR(r)	$0.64 r^{-2}$	1.66	[r,2r)
	sDR(r)	$0.57 r^{-2}$	1.48	[r,2r)
sifted	sMPS(r)	$0.51r^{-2}$	1.33	[r,2r)
	sODR(r)	$0.51 r^{-2}$	1.33	[r,2r)
	$\Box(\sqrt{2}r)$	$\frac{1}{2}r^{-2}$	1.30	$\{\sqrt{2}r,2r\}$
sparsest possible $\triangle(\sqrt{3}r)$ $\frac{2}{3\sqrt{3}}r^{-2}$ 1 $\{\sqrt{3}r\}$				

Sifting changes triangulation edge lengths, angles, Voronoi cell squish

Sifting changes triangulation edge lengths, angles, Voronoi cell squish

Sifting changes triangulation edge lengths, angles, Voronoi cell squish

DR and ODR Sometimes Appear Random

- Many control parameters
 - Which circle (off) center to insert next?

We picked random-looking versions for comparisons, Not these!

Sifting Retains Randomness Surprise! But not identical.

What's happening?

- Gets less dense but never gets close to "converging" to a structured mesh
 - No pair can be replaced by one.
 - A triple can be replaced by two? Would we want to?

Sifting (introduces?) Randomness Surprise! But not identical.

Sifting (introduces?) Randomness Surprise! But not identical.

Original distribution doesn't seem to matter much

Time and Memory Effectively Linear

Beyond Uniform

- Prior was all 2d, constant radius
 - Spatially varying radii
 - Theory
 - Maximum rate of change L
 - Stippling application
 - L exceeded, still works

abrupt density changes

Beyond 2d

- Prior was all 2d, constant disk radius
 - Higher dimension
 - Seems straightforward to implement
 - · effectiveness unknown

Bonus Thought how I think about sampling

Scott: reorganized this so metrics are in black, the concept being measured in large colored text, and techniques in smaller non-cap text. One can imagine both local and global measures, min max ave dev, for each of the axes and their metrics, some more natural than others.

A Space for All Sampling Methods

Process randomness is a hidden axis, Fourier Spectrum, Power and Anisotropy merely a means to obtain spatial randomness. Spatial Pairwise Distances, Edge Orientations Randomness Blue Noise Dimension d uniform-random coordinates **MPS** iittering sifting off-centers two-radii MPS Delaunay refinement maximal Poisson-disk sampling Opt-β, spatially-varying MPS injection Geometric bubble mesh joint position and sample optimization optimization Density $r_{\rm f}$ free radius, nearest-neighbor distance; Delaunay edge lengths Discrete Density r_c coverage radius, Vornoi vertex distance $\beta = r_c/r_f$ Distribution Aspect Ratio; DT angles, Vor cell aspect ratio *n* number of samples Lipschitz Conditions kissing number Unique Coverage number of neighbors, edges, cells,

Summary

- Sifting (replace 2-for-1) points
 - Reduces the number of points
 - Retains randomness and quality
 - Poisson-disk sampling as a subroutine resample
- To do
 - Theory for rapidly varying sizing function, L >> 1
 - High dimensions
 - Generate a sparser distribution to begin with

